Lesson
Denary to binary conversion
1. Create a grid:
128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
---|---|---|---|---|---|---|---|
2. Add a 1 to the corresponding cell if number contributes to target number and 0 to all the other cells
Worked example: convert 2410 to binary.
128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
1610+810=2410
The binary value is 110002 (we can ignore the preceding zeros)
Binary to denary conversion
Worked example: Convert 010110012 to denary
1. Create the grid:
128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
---|---|---|---|---|---|---|---|
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
2. Add up the cells that have a corresponding value of 1:
64 + 1610 + 810 + 1= 8910
Hexadecimal to denary conversion
- Convert the two hex values separately to denary value
- Multiply the first value by 16
- Add the second value
Worked example: Covert A316 to denary
A16 = 1010
316 = 310
(1010 x 1610) +310 = 16310
Denary to hexadecimal conversion
- Integer divide the denary number by 16
- Take the modulus 16 of the denary number
- Convert the two numbers to the corresponding hex values.
Worked example: Covert 18910 to hex
18910 / 1610 = 1110 remainder 1510
1110 = B16
1510 = F16
18910 = BF16
Hexadecimal to binary conversion
- Find the corresponding 4-bit binary number for the two numbers
- Concatenate the two binary values to give the final binary value
Worked example: Covert C316 to binary
C16 = 1210 = 11002
316= 310 = 00112
110000112
Binary to hexadecimal conversion
- Split the binary number into groups of 4 bits: 11102 10102
- Find the corresponding Hex value for each of the 4-bit groups
Worked example: Covert 111010102 to hexadecimal
11102 |10102
11102 = 1410 = E16
10102 = 1010 = A16
EA16
Learning Videos
For more information click on the tab below to watch a video about the lesson.
Click for video - Converting between decimal and 8 bit binary
Click for video - Converting between decimal and 2 digit hexadecimal
Questions
-
For each of the binary values below, write down the decimal equivalent.
a) 1101
b) 1111
c) 00100110
d) 10110111
a) 13
b) 15
c) 38
d) 183
-
For each of the decimal values below, write down the binary equivalent.
a) 18
b) 57
c) 163
d) 255
a) 00010010
b) 00111001
c) 10100011
d) 11111111
When converting from denary to binary, leading zeros do not need to be written. So (a) would be just as correct to write 10010. However, if the question asks for an 8 bit number, then only 00010010 would be correct.
-
Circle the binary value below that represents the decimal value 87.
(a) 01011010
(b) 11000100
(c) 01010111
(d) 00011010
(c) 01010111
-
Decimal to Hexadecimal conversion
(i) Convert decimal 19 to hexadecimal:
(ii) Convert decimal 44 to hexadecimal:
(iii) Convert hexadecimal 19 to decimal:
(iv) Convert hexadecimal A3 to decimal:
i) 13
ii) 2C
iii) 25
iv) 163
-
Binary to hexadecimal conversion:
(i) Convert binary 00110101 to hexadecimal:
(ii) Convert binary 11010111 to hexadecimal:
(iii) Convert hexadecimal 1E to binary:
(iv) Convert hexadecimal FF to binary:
i) 35
ii) D7
iii) 0001 1110
iv) 1111 1111
-
Convert the following values to and from Hexadecimal: (Show your working).
(a) Decimal 37 to Hex
(b) Decimal 59 to Hex
(c) Hex 11 to Decimal
(d) Hex 2F to Decimal
(e) Hex 1A to Binary
(f) Hex 16 to Binary
(g) Binary 0011 0111 to Hex
(h) Binary 1101 1111 to Hex
a) 25
b) 3B
c) 17
d) 47
e) 0001 1010
f) 0001 0110
g) 37
h) DF
Go Back